DIY Logging Volt/Ampmeter
cmsis_gcc.h
Go to the documentation of this file.
1 /**************************************************************************//**
2  * @file cmsis_gcc.h
3  * @brief CMSIS compiler GCC header file
4  * @version V5.0.4
5  * @date 09. April 2018
6  ******************************************************************************/
7 /*
8  * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  *
12  * Licensed under the Apache License, Version 2.0 (the License); you may
13  * not use this file except in compliance with the License.
14  * You may obtain a copy of the License at
15  *
16  * www.apache.org/licenses/LICENSE-2.0
17  *
18  * Unless required by applicable law or agreed to in writing, software
19  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21  * See the License for the specific language governing permissions and
22  * limitations under the License.
23  */
24 
25 #ifndef __CMSIS_GCC_H
26 #define __CMSIS_GCC_H
27 
28 /* ignore some GCC warnings */
29 #pragma GCC diagnostic push
30 #pragma GCC diagnostic ignored "-Wsign-conversion"
31 #pragma GCC diagnostic ignored "-Wconversion"
32 #pragma GCC diagnostic ignored "-Wunused-parameter"
33 
34 /* Fallback for __has_builtin */
35 #ifndef __has_builtin
36  #define __has_builtin(x) (0)
37 #endif
38 
39 /* CMSIS compiler specific defines */
40 #ifndef __ASM
41  #define __ASM __asm
42 #endif
43 #ifndef __INLINE
44  #define __INLINE inline
45 #endif
46 #ifndef __STATIC_INLINE
47  #define __STATIC_INLINE static inline
48 #endif
49 #ifndef __STATIC_FORCEINLINE
50  #define __STATIC_FORCEINLINE __attribute__((always_inline)) static inline
51 #endif
52 #ifndef __NO_RETURN
53  #define __NO_RETURN __attribute__((__noreturn__))
54 #endif
55 #ifndef __USED
56  #define __USED __attribute__((used))
57 #endif
58 #ifndef __WEAK
59  #define __WEAK __attribute__((weak))
60 #endif
61 #ifndef __PACKED
62  #define __PACKED __attribute__((packed, aligned(1)))
63 #endif
64 #ifndef __PACKED_STRUCT
65  #define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
66 #endif
67 #ifndef __PACKED_UNION
68  #define __PACKED_UNION union __attribute__((packed, aligned(1)))
69 #endif
70 #ifndef __UNALIGNED_UINT32 /* deprecated */
71  #pragma GCC diagnostic push
72  #pragma GCC diagnostic ignored "-Wpacked"
73  #pragma GCC diagnostic ignored "-Wattributes"
74  struct __attribute__((packed)) T_UINT32 { uint32_t v; };
75  #pragma GCC diagnostic pop
76  #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
77 #endif
78 #ifndef __UNALIGNED_UINT16_WRITE
79  #pragma GCC diagnostic push
80  #pragma GCC diagnostic ignored "-Wpacked"
81  #pragma GCC diagnostic ignored "-Wattributes"
82  __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
83  #pragma GCC diagnostic pop
84  #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
85 #endif
86 #ifndef __UNALIGNED_UINT16_READ
87  #pragma GCC diagnostic push
88  #pragma GCC diagnostic ignored "-Wpacked"
89  #pragma GCC diagnostic ignored "-Wattributes"
90  __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
91  #pragma GCC diagnostic pop
92  #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
93 #endif
94 #ifndef __UNALIGNED_UINT32_WRITE
95  #pragma GCC diagnostic push
96  #pragma GCC diagnostic ignored "-Wpacked"
97  #pragma GCC diagnostic ignored "-Wattributes"
98  __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
99  #pragma GCC diagnostic pop
100  #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
101 #endif
102 #ifndef __UNALIGNED_UINT32_READ
103  #pragma GCC diagnostic push
104  #pragma GCC diagnostic ignored "-Wpacked"
105  #pragma GCC diagnostic ignored "-Wattributes"
106  __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
107  #pragma GCC diagnostic pop
108  #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
109 #endif
110 #ifndef __ALIGNED
111  #define __ALIGNED(x) __attribute__((aligned(x)))
112 #endif
113 #ifndef __RESTRICT
114  #define __RESTRICT __restrict
115 #endif
116 
117 
118 /* ########################### Core Function Access ########################### */
119 /** \ingroup CMSIS_Core_FunctionInterface
120  \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
121  @{
122  */
123 
124 /**
125  \brief Enable IRQ Interrupts
126  \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
127  Can only be executed in Privileged modes.
128  */
130 {
131  __ASM volatile ("cpsie i" : : : "memory");
132 }
133 
134 
135 /**
136  \brief Disable IRQ Interrupts
137  \details Disables IRQ interrupts by setting the I-bit in the CPSR.
138  Can only be executed in Privileged modes.
139  */
141 {
142  __ASM volatile ("cpsid i" : : : "memory");
143 }
144 
145 
146 /**
147  \brief Get Control Register
148  \details Returns the content of the Control Register.
149  \return Control Register value
150  */
151 __STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
152 {
153  uint32_t result;
154 
155  __ASM volatile ("MRS %0, control" : "=r" (result) );
156  return(result);
157 }
158 
159 
160 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
161 /**
162  \brief Get Control Register (non-secure)
163  \details Returns the content of the non-secure Control Register when in secure mode.
164  \return non-secure Control Register value
165  */
166 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
167 {
168  uint32_t result;
169 
170  __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
171  return(result);
172 }
173 #endif
174 
175 
176 /**
177  \brief Set Control Register
178  \details Writes the given value to the Control Register.
179  \param [in] control Control Register value to set
180  */
181 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
182 {
183  __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
184 }
185 
186 
187 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
188 /**
189  \brief Set Control Register (non-secure)
190  \details Writes the given value to the non-secure Control Register when in secure state.
191  \param [in] control Control Register value to set
192  */
193 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
194 {
195  __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
196 }
197 #endif
198 
199 
200 /**
201  \brief Get IPSR Register
202  \details Returns the content of the IPSR Register.
203  \return IPSR Register value
204  */
205 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
206 {
207  uint32_t result;
208 
209  __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
210  return(result);
211 }
212 
213 
214 /**
215  \brief Get APSR Register
216  \details Returns the content of the APSR Register.
217  \return APSR Register value
218  */
219 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
220 {
221  uint32_t result;
222 
223  __ASM volatile ("MRS %0, apsr" : "=r" (result) );
224  return(result);
225 }
226 
227 
228 /**
229  \brief Get xPSR Register
230  \details Returns the content of the xPSR Register.
231  \return xPSR Register value
232  */
233 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
234 {
235  uint32_t result;
236 
237  __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
238  return(result);
239 }
240 
241 
242 /**
243  \brief Get Process Stack Pointer
244  \details Returns the current value of the Process Stack Pointer (PSP).
245  \return PSP Register value
246  */
247 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
248 {
249  uint32_t result;
250 
251  __ASM volatile ("MRS %0, psp" : "=r" (result) );
252  return(result);
253 }
254 
255 
256 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
257 /**
258  \brief Get Process Stack Pointer (non-secure)
259  \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
260  \return PSP Register value
261  */
262 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
263 {
264  uint32_t result;
265 
266  __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
267  return(result);
268 }
269 #endif
270 
271 
272 /**
273  \brief Set Process Stack Pointer
274  \details Assigns the given value to the Process Stack Pointer (PSP).
275  \param [in] topOfProcStack Process Stack Pointer value to set
276  */
277 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
278 {
279  __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
280 }
281 
282 
283 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
284 /**
285  \brief Set Process Stack Pointer (non-secure)
286  \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
287  \param [in] topOfProcStack Process Stack Pointer value to set
288  */
289 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
290 {
291  __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
292 }
293 #endif
294 
295 
296 /**
297  \brief Get Main Stack Pointer
298  \details Returns the current value of the Main Stack Pointer (MSP).
299  \return MSP Register value
300  */
301 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
302 {
303  uint32_t result;
304 
305  __ASM volatile ("MRS %0, msp" : "=r" (result) );
306  return(result);
307 }
308 
309 
310 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
311 /**
312  \brief Get Main Stack Pointer (non-secure)
313  \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
314  \return MSP Register value
315  */
316 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
317 {
318  uint32_t result;
319 
320  __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
321  return(result);
322 }
323 #endif
324 
325 
326 /**
327  \brief Set Main Stack Pointer
328  \details Assigns the given value to the Main Stack Pointer (MSP).
329  \param [in] topOfMainStack Main Stack Pointer value to set
330  */
331 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
332 {
333  __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
334 }
335 
336 
337 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
338 /**
339  \brief Set Main Stack Pointer (non-secure)
340  \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
341  \param [in] topOfMainStack Main Stack Pointer value to set
342  */
343 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
344 {
345  __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
346 }
347 #endif
348 
349 
350 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
351 /**
352  \brief Get Stack Pointer (non-secure)
353  \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
354  \return SP Register value
355  */
356 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
357 {
358  uint32_t result;
359 
360  __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
361  return(result);
362 }
363 
364 
365 /**
366  \brief Set Stack Pointer (non-secure)
367  \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
368  \param [in] topOfStack Stack Pointer value to set
369  */
370 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
371 {
372  __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
373 }
374 #endif
375 
376 
377 /**
378  \brief Get Priority Mask
379  \details Returns the current state of the priority mask bit from the Priority Mask Register.
380  \return Priority Mask value
381  */
382 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
383 {
384  uint32_t result;
385 
386  __ASM volatile ("MRS %0, primask" : "=r" (result) :: "memory");
387  return(result);
388 }
389 
390 
391 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
392 /**
393  \brief Get Priority Mask (non-secure)
394  \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
395  \return Priority Mask value
396  */
397 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
398 {
399  uint32_t result;
400 
401  __ASM volatile ("MRS %0, primask_ns" : "=r" (result) :: "memory");
402  return(result);
403 }
404 #endif
405 
406 
407 /**
408  \brief Set Priority Mask
409  \details Assigns the given value to the Priority Mask Register.
410  \param [in] priMask Priority Mask
411  */
412 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
413 {
414  __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
415 }
416 
417 
418 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
419 /**
420  \brief Set Priority Mask (non-secure)
421  \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
422  \param [in] priMask Priority Mask
423  */
424 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
425 {
426  __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
427 }
428 #endif
429 
430 
431 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
432  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
433  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
434 /**
435  \brief Enable FIQ
436  \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
437  Can only be executed in Privileged modes.
438  */
439 __STATIC_FORCEINLINE void __enable_fault_irq(void)
440 {
441  __ASM volatile ("cpsie f" : : : "memory");
442 }
443 
444 
445 /**
446  \brief Disable FIQ
447  \details Disables FIQ interrupts by setting the F-bit in the CPSR.
448  Can only be executed in Privileged modes.
449  */
450 __STATIC_FORCEINLINE void __disable_fault_irq(void)
451 {
452  __ASM volatile ("cpsid f" : : : "memory");
453 }
454 
455 
456 /**
457  \brief Get Base Priority
458  \details Returns the current value of the Base Priority register.
459  \return Base Priority register value
460  */
461 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
462 {
463  uint32_t result;
464 
465  __ASM volatile ("MRS %0, basepri" : "=r" (result) );
466  return(result);
467 }
468 
469 
470 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
471 /**
472  \brief Get Base Priority (non-secure)
473  \details Returns the current value of the non-secure Base Priority register when in secure state.
474  \return Base Priority register value
475  */
476 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
477 {
478  uint32_t result;
479 
480  __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
481  return(result);
482 }
483 #endif
484 
485 
486 /**
487  \brief Set Base Priority
488  \details Assigns the given value to the Base Priority register.
489  \param [in] basePri Base Priority value to set
490  */
491 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
492 {
493  __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
494 }
495 
496 
497 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
498 /**
499  \brief Set Base Priority (non-secure)
500  \details Assigns the given value to the non-secure Base Priority register when in secure state.
501  \param [in] basePri Base Priority value to set
502  */
503 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
504 {
505  __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
506 }
507 #endif
508 
509 
510 /**
511  \brief Set Base Priority with condition
512  \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
513  or the new value increases the BASEPRI priority level.
514  \param [in] basePri Base Priority value to set
515  */
516 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
517 {
518  __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
519 }
520 
521 
522 /**
523  \brief Get Fault Mask
524  \details Returns the current value of the Fault Mask register.
525  \return Fault Mask register value
526  */
527 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
528 {
529  uint32_t result;
530 
531  __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
532  return(result);
533 }
534 
535 
536 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
537 /**
538  \brief Get Fault Mask (non-secure)
539  \details Returns the current value of the non-secure Fault Mask register when in secure state.
540  \return Fault Mask register value
541  */
542 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
543 {
544  uint32_t result;
545 
546  __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
547  return(result);
548 }
549 #endif
550 
551 
552 /**
553  \brief Set Fault Mask
554  \details Assigns the given value to the Fault Mask register.
555  \param [in] faultMask Fault Mask value to set
556  */
557 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
558 {
559  __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
560 }
561 
562 
563 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
564 /**
565  \brief Set Fault Mask (non-secure)
566  \details Assigns the given value to the non-secure Fault Mask register when in secure state.
567  \param [in] faultMask Fault Mask value to set
568  */
569 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
570 {
571  __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
572 }
573 #endif
574 
575 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
576  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
577  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
578 
579 
580 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
581  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
582 
583 /**
584  \brief Get Process Stack Pointer Limit
585  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
586  Stack Pointer Limit register hence zero is returned always in non-secure
587  mode.
588 
589  \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
590  \return PSPLIM Register value
591  */
592 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
593 {
594 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
595  (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
596  // without main extensions, the non-secure PSPLIM is RAZ/WI
597  return 0U;
598 #else
599  uint32_t result;
600  __ASM volatile ("MRS %0, psplim" : "=r" (result) );
601  return result;
602 #endif
603 }
604 
605 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
606 /**
607  \brief Get Process Stack Pointer Limit (non-secure)
608  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
609  Stack Pointer Limit register hence zero is returned always.
610 
611  \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
612  \return PSPLIM Register value
613  */
614 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
615 {
616 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
617  // without main extensions, the non-secure PSPLIM is RAZ/WI
618  return 0U;
619 #else
620  uint32_t result;
621  __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
622  return result;
623 #endif
624 }
625 #endif
626 
627 
628 /**
629  \brief Set Process Stack Pointer Limit
630  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
631  Stack Pointer Limit register hence the write is silently ignored in non-secure
632  mode.
633 
634  \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
635  \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
636  */
637 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
638 {
639 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
640  (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
641  // without main extensions, the non-secure PSPLIM is RAZ/WI
642  (void)ProcStackPtrLimit;
643 #else
644  __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
645 #endif
646 }
647 
648 
649 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
650 /**
651  \brief Set Process Stack Pointer (non-secure)
652  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
653  Stack Pointer Limit register hence the write is silently ignored.
654 
655  \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
656  \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
657  */
658 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
659 {
660 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
661  // without main extensions, the non-secure PSPLIM is RAZ/WI
662  (void)ProcStackPtrLimit;
663 #else
664  __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
665 #endif
666 }
667 #endif
668 
669 
670 /**
671  \brief Get Main Stack Pointer Limit
672  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
673  Stack Pointer Limit register hence zero is returned always in non-secure
674  mode.
675 
676  \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
677  \return MSPLIM Register value
678  */
679 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
680 {
681 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
682  (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
683  // without main extensions, the non-secure MSPLIM is RAZ/WI
684  return 0U;
685 #else
686  uint32_t result;
687  __ASM volatile ("MRS %0, msplim" : "=r" (result) );
688  return result;
689 #endif
690 }
691 
692 
693 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
694 /**
695  \brief Get Main Stack Pointer Limit (non-secure)
696  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
697  Stack Pointer Limit register hence zero is returned always.
698 
699  \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
700  \return MSPLIM Register value
701  */
702 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
703 {
704 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
705  // without main extensions, the non-secure MSPLIM is RAZ/WI
706  return 0U;
707 #else
708  uint32_t result;
709  __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
710  return result;
711 #endif
712 }
713 #endif
714 
715 
716 /**
717  \brief Set Main Stack Pointer Limit
718  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
719  Stack Pointer Limit register hence the write is silently ignored in non-secure
720  mode.
721 
722  \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
723  \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
724  */
725 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
726 {
727 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
728  (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
729  // without main extensions, the non-secure MSPLIM is RAZ/WI
730  (void)MainStackPtrLimit;
731 #else
732  __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
733 #endif
734 }
735 
736 
737 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
738 /**
739  \brief Set Main Stack Pointer Limit (non-secure)
740  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
741  Stack Pointer Limit register hence the write is silently ignored.
742 
743  \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
744  \param [in] MainStackPtrLimit Main Stack Pointer value to set
745  */
746 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
747 {
748 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
749  // without main extensions, the non-secure MSPLIM is RAZ/WI
750  (void)MainStackPtrLimit;
751 #else
752  __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
753 #endif
754 }
755 #endif
756 
757 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
758  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
759 
760 
761 /**
762  \brief Get FPSCR
763  \details Returns the current value of the Floating Point Status/Control register.
764  \return Floating Point Status/Control register value
765  */
766 __STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
767 {
768 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
769  (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
770 #if __has_builtin(__builtin_arm_get_fpscr)
771 // Re-enable using built-in when GCC has been fixed
772 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
773  /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
774  return __builtin_arm_get_fpscr();
775 #else
776  uint32_t result;
777 
778  __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
779  return(result);
780 #endif
781 #else
782  return(0U);
783 #endif
784 }
785 
786 
787 /**
788  \brief Set FPSCR
789  \details Assigns the given value to the Floating Point Status/Control register.
790  \param [in] fpscr Floating Point Status/Control value to set
791  */
792 __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
793 {
794 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
795  (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
796 #if __has_builtin(__builtin_arm_set_fpscr)
797 // Re-enable using built-in when GCC has been fixed
798 // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
799  /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
800  __builtin_arm_set_fpscr(fpscr);
801 #else
802  __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
803 #endif
804 #else
805  (void)fpscr;
806 #endif
807 }
808 
809 
810 /*@} end of CMSIS_Core_RegAccFunctions */
811 
812 
813 /* ########################## Core Instruction Access ######################### */
814 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
815  Access to dedicated instructions
816  @{
817 */
818 
819 /* Define macros for porting to both thumb1 and thumb2.
820  * For thumb1, use low register (r0-r7), specified by constraint "l"
821  * Otherwise, use general registers, specified by constraint "r" */
822 #if defined (__thumb__) && !defined (__thumb2__)
823 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
824 #define __CMSIS_GCC_RW_REG(r) "+l" (r)
825 #define __CMSIS_GCC_USE_REG(r) "l" (r)
826 #else
827 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
828 #define __CMSIS_GCC_RW_REG(r) "+r" (r)
829 #define __CMSIS_GCC_USE_REG(r) "r" (r)
830 #endif
831 
832 /**
833  \brief No Operation
834  \details No Operation does nothing. This instruction can be used for code alignment purposes.
835  */
836 #define __NOP() __ASM volatile ("nop")
837 
838 /**
839  \brief Wait For Interrupt
840  \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
841  */
842 #define __WFI() __ASM volatile ("wfi")
843 
844 
845 /**
846  \brief Wait For Event
847  \details Wait For Event is a hint instruction that permits the processor to enter
848  a low-power state until one of a number of events occurs.
849  */
850 #define __WFE() __ASM volatile ("wfe")
851 
852 
853 /**
854  \brief Send Event
855  \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
856  */
857 #define __SEV() __ASM volatile ("sev")
858 
859 
860 /**
861  \brief Instruction Synchronization Barrier
862  \details Instruction Synchronization Barrier flushes the pipeline in the processor,
863  so that all instructions following the ISB are fetched from cache or memory,
864  after the instruction has been completed.
865  */
866 __STATIC_FORCEINLINE void __ISB(void)
867 {
868  __ASM volatile ("isb 0xF":::"memory");
869 }
870 
871 
872 /**
873  \brief Data Synchronization Barrier
874  \details Acts as a special kind of Data Memory Barrier.
875  It completes when all explicit memory accesses before this instruction complete.
876  */
877 __STATIC_FORCEINLINE void __DSB(void)
878 {
879  __ASM volatile ("dsb 0xF":::"memory");
880 }
881 
882 
883 /**
884  \brief Data Memory Barrier
885  \details Ensures the apparent order of the explicit memory operations before
886  and after the instruction, without ensuring their completion.
887  */
888 __STATIC_FORCEINLINE void __DMB(void)
889 {
890  __ASM volatile ("dmb 0xF":::"memory");
891 }
892 
893 
894 /**
895  \brief Reverse byte order (32 bit)
896  \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
897  \param [in] value Value to reverse
898  \return Reversed value
899  */
900 __STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
901 {
902 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
903  return __builtin_bswap32(value);
904 #else
905  uint32_t result;
906 
907  __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
908  return result;
909 #endif
910 }
911 
912 
913 /**
914  \brief Reverse byte order (16 bit)
915  \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
916  \param [in] value Value to reverse
917  \return Reversed value
918  */
919 __STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
920 {
921  uint32_t result;
922 
923  __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
924  return result;
925 }
926 
927 
928 /**
929  \brief Reverse byte order (16 bit)
930  \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
931  \param [in] value Value to reverse
932  \return Reversed value
933  */
934 __STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
935 {
936 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
937  return (int16_t)__builtin_bswap16(value);
938 #else
939  int16_t result;
940 
941  __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
942  return result;
943 #endif
944 }
945 
946 
947 /**
948  \brief Rotate Right in unsigned value (32 bit)
949  \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
950  \param [in] op1 Value to rotate
951  \param [in] op2 Number of Bits to rotate
952  \return Rotated value
953  */
954 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
955 {
956  op2 %= 32U;
957  if (op2 == 0U)
958  {
959  return op1;
960  }
961  return (op1 >> op2) | (op1 << (32U - op2));
962 }
963 
964 
965 /**
966  \brief Breakpoint
967  \details Causes the processor to enter Debug state.
968  Debug tools can use this to investigate system state when the instruction at a particular address is reached.
969  \param [in] value is ignored by the processor.
970  If required, a debugger can use it to store additional information about the breakpoint.
971  */
972 #define __BKPT(value) __ASM volatile ("bkpt "#value)
973 
974 
975 /**
976  \brief Reverse bit order of value
977  \details Reverses the bit order of the given value.
978  \param [in] value Value to reverse
979  \return Reversed value
980  */
981 __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
982 {
983  uint32_t result;
984 
985 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
986  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
987  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
988  __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
989 #else
990  uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
991 
992  result = value; /* r will be reversed bits of v; first get LSB of v */
993  for (value >>= 1U; value != 0U; value >>= 1U)
994  {
995  result <<= 1U;
996  result |= value & 1U;
997  s--;
998  }
999  result <<= s; /* shift when v's highest bits are zero */
1000 #endif
1001  return result;
1002 }
1003 
1004 
1005 /**
1006  \brief Count leading zeros
1007  \details Counts the number of leading zeros of a data value.
1008  \param [in] value Value to count the leading zeros
1009  \return number of leading zeros in value
1010  */
1011 #define __CLZ (uint8_t)__builtin_clz
1012 
1013 
1014 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1015  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1016  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1017  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
1018 /**
1019  \brief LDR Exclusive (8 bit)
1020  \details Executes a exclusive LDR instruction for 8 bit value.
1021  \param [in] ptr Pointer to data
1022  \return value of type uint8_t at (*ptr)
1023  */
1024 __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
1025 {
1026  uint32_t result;
1027 
1028 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1029  __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
1030 #else
1031  /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1032  accepted by assembler. So has to use following less efficient pattern.
1033  */
1034  __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
1035 #endif
1036  return ((uint8_t) result); /* Add explicit type cast here */
1037 }
1038 
1039 
1040 /**
1041  \brief LDR Exclusive (16 bit)
1042  \details Executes a exclusive LDR instruction for 16 bit values.
1043  \param [in] ptr Pointer to data
1044  \return value of type uint16_t at (*ptr)
1045  */
1046 __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
1047 {
1048  uint32_t result;
1049 
1050 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1051  __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
1052 #else
1053  /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1054  accepted by assembler. So has to use following less efficient pattern.
1055  */
1056  __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
1057 #endif
1058  return ((uint16_t) result); /* Add explicit type cast here */
1059 }
1060 
1061 
1062 /**
1063  \brief LDR Exclusive (32 bit)
1064  \details Executes a exclusive LDR instruction for 32 bit values.
1065  \param [in] ptr Pointer to data
1066  \return value of type uint32_t at (*ptr)
1067  */
1068 __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
1069 {
1070  uint32_t result;
1071 
1072  __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
1073  return(result);
1074 }
1075 
1076 
1077 /**
1078  \brief STR Exclusive (8 bit)
1079  \details Executes a exclusive STR instruction for 8 bit values.
1080  \param [in] value Value to store
1081  \param [in] ptr Pointer to location
1082  \return 0 Function succeeded
1083  \return 1 Function failed
1084  */
1085 __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
1086 {
1087  uint32_t result;
1088 
1089  __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1090  return(result);
1091 }
1092 
1093 
1094 /**
1095  \brief STR Exclusive (16 bit)
1096  \details Executes a exclusive STR instruction for 16 bit values.
1097  \param [in] value Value to store
1098  \param [in] ptr Pointer to location
1099  \return 0 Function succeeded
1100  \return 1 Function failed
1101  */
1102 __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
1103 {
1104  uint32_t result;
1105 
1106  __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
1107  return(result);
1108 }
1109 
1110 
1111 /**
1112  \brief STR Exclusive (32 bit)
1113  \details Executes a exclusive STR instruction for 32 bit values.
1114  \param [in] value Value to store
1115  \param [in] ptr Pointer to location
1116  \return 0 Function succeeded
1117  \return 1 Function failed
1118  */
1119 __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
1120 {
1121  uint32_t result;
1122 
1123  __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
1124  return(result);
1125 }
1126 
1127 
1128 /**
1129  \brief Remove the exclusive lock
1130  \details Removes the exclusive lock which is created by LDREX.
1131  */
1132 __STATIC_FORCEINLINE void __CLREX(void)
1133 {
1134  __ASM volatile ("clrex" ::: "memory");
1135 }
1136 
1137 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1138  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1139  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1140  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
1141 
1142 
1143 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1144  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1145  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
1146 /**
1147  \brief Signed Saturate
1148  \details Saturates a signed value.
1149  \param [in] ARG1 Value to be saturated
1150  \param [in] ARG2 Bit position to saturate to (1..32)
1151  \return Saturated value
1152  */
1153 #define __SSAT(ARG1,ARG2) \
1154 __extension__ \
1155 ({ \
1156  int32_t __RES, __ARG1 = (ARG1); \
1157  __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1158  __RES; \
1159  })
1160 
1161 
1162 /**
1163  \brief Unsigned Saturate
1164  \details Saturates an unsigned value.
1165  \param [in] ARG1 Value to be saturated
1166  \param [in] ARG2 Bit position to saturate to (0..31)
1167  \return Saturated value
1168  */
1169 #define __USAT(ARG1,ARG2) \
1170  __extension__ \
1171 ({ \
1172  uint32_t __RES, __ARG1 = (ARG1); \
1173  __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1174  __RES; \
1175  })
1176 
1177 
1178 /**
1179  \brief Rotate Right with Extend (32 bit)
1180  \details Moves each bit of a bitstring right by one bit.
1181  The carry input is shifted in at the left end of the bitstring.
1182  \param [in] value Value to rotate
1183  \return Rotated value
1184  */
1185 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1186 {
1187  uint32_t result;
1188 
1189  __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1190  return(result);
1191 }
1192 
1193 
1194 /**
1195  \brief LDRT Unprivileged (8 bit)
1196  \details Executes a Unprivileged LDRT instruction for 8 bit value.
1197  \param [in] ptr Pointer to data
1198  \return value of type uint8_t at (*ptr)
1199  */
1200 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1201 {
1202  uint32_t result;
1203 
1204 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1205  __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1206 #else
1207  /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1208  accepted by assembler. So has to use following less efficient pattern.
1209  */
1210  __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1211 #endif
1212  return ((uint8_t) result); /* Add explicit type cast here */
1213 }
1214 
1215 
1216 /**
1217  \brief LDRT Unprivileged (16 bit)
1218  \details Executes a Unprivileged LDRT instruction for 16 bit values.
1219  \param [in] ptr Pointer to data
1220  \return value of type uint16_t at (*ptr)
1221  */
1222 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1223 {
1224  uint32_t result;
1225 
1226 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
1227  __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1228 #else
1229  /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
1230  accepted by assembler. So has to use following less efficient pattern.
1231  */
1232  __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
1233 #endif
1234  return ((uint16_t) result); /* Add explicit type cast here */
1235 }
1236 
1237 
1238 /**
1239  \brief LDRT Unprivileged (32 bit)
1240  \details Executes a Unprivileged LDRT instruction for 32 bit values.
1241  \param [in] ptr Pointer to data
1242  \return value of type uint32_t at (*ptr)
1243  */
1244 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1245 {
1246  uint32_t result;
1247 
1248  __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1249  return(result);
1250 }
1251 
1252 
1253 /**
1254  \brief STRT Unprivileged (8 bit)
1255  \details Executes a Unprivileged STRT instruction for 8 bit values.
1256  \param [in] value Value to store
1257  \param [in] ptr Pointer to location
1258  */
1259 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1260 {
1261  __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1262 }
1263 
1264 
1265 /**
1266  \brief STRT Unprivileged (16 bit)
1267  \details Executes a Unprivileged STRT instruction for 16 bit values.
1268  \param [in] value Value to store
1269  \param [in] ptr Pointer to location
1270  */
1271 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1272 {
1273  __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1274 }
1275 
1276 
1277 /**
1278  \brief STRT Unprivileged (32 bit)
1279  \details Executes a Unprivileged STRT instruction for 32 bit values.
1280  \param [in] value Value to store
1281  \param [in] ptr Pointer to location
1282  */
1283 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1284 {
1285  __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1286 }
1287 
1288 #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1289  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1290  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1291 
1292 /**
1293  \brief Signed Saturate
1294  \details Saturates a signed value.
1295  \param [in] value Value to be saturated
1296  \param [in] sat Bit position to saturate to (1..32)
1297  \return Saturated value
1298  */
1299 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1301  if ((sat >= 1U) && (sat <= 32U))
1302  {
1303  const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1304  const int32_t min = -1 - max ;
1305  if (val > max)
1306  {
1307  return max;
1308  }
1309  else if (val < min)
1310  {
1311  return min;
1312  }
1313  }
1314  return val;
1315 }
1316 
1317 /**
1318  \brief Unsigned Saturate
1319  \details Saturates an unsigned value.
1320  \param [in] value Value to be saturated
1321  \param [in] sat Bit position to saturate to (0..31)
1322  \return Saturated value
1323  */
1324 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1325 {
1326  if (sat <= 31U)
1327  {
1328  const uint32_t max = ((1U << sat) - 1U);
1329  if (val > (int32_t)max)
1330  {
1331  return max;
1332  }
1333  else if (val < 0)
1334  {
1335  return 0U;
1336  }
1337  }
1338  return (uint32_t)val;
1339 }
1340 
1341 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1342  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1343  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1344 
1345 
1346 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1347  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
1348 /**
1349  \brief Load-Acquire (8 bit)
1350  \details Executes a LDAB instruction for 8 bit value.
1351  \param [in] ptr Pointer to data
1352  \return value of type uint8_t at (*ptr)
1353  */
1354 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1355 {
1356  uint32_t result;
1357 
1358  __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1359  return ((uint8_t) result);
1360 }
1361 
1362 
1363 /**
1364  \brief Load-Acquire (16 bit)
1365  \details Executes a LDAH instruction for 16 bit values.
1366  \param [in] ptr Pointer to data
1367  \return value of type uint16_t at (*ptr)
1368  */
1369 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1370 {
1371  uint32_t result;
1372 
1373  __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1374  return ((uint16_t) result);
1375 }
1376 
1377 
1378 /**
1379  \brief Load-Acquire (32 bit)
1380  \details Executes a LDA instruction for 32 bit values.
1381  \param [in] ptr Pointer to data
1382  \return value of type uint32_t at (*ptr)
1383  */
1384 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1385 {
1386  uint32_t result;
1387 
1388  __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1389  return(result);
1390 }
1391 
1392 
1393 /**
1394  \brief Store-Release (8 bit)
1395  \details Executes a STLB instruction for 8 bit values.
1396  \param [in] value Value to store
1397  \param [in] ptr Pointer to location
1398  */
1399 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1400 {
1401  __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1402 }
1403 
1404 
1405 /**
1406  \brief Store-Release (16 bit)
1407  \details Executes a STLH instruction for 16 bit values.
1408  \param [in] value Value to store
1409  \param [in] ptr Pointer to location
1410  */
1411 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1412 {
1413  __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1414 }
1415 
1416 
1417 /**
1418  \brief Store-Release (32 bit)
1419  \details Executes a STL instruction for 32 bit values.
1420  \param [in] value Value to store
1421  \param [in] ptr Pointer to location
1422  */
1423 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1424 {
1425  __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1426 }
1427 
1428 
1429 /**
1430  \brief Load-Acquire Exclusive (8 bit)
1431  \details Executes a LDAB exclusive instruction for 8 bit value.
1432  \param [in] ptr Pointer to data
1433  \return value of type uint8_t at (*ptr)
1434  */
1435 __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
1436 {
1437  uint32_t result;
1438 
1439  __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) );
1440  return ((uint8_t) result);
1441 }
1442 
1443 
1444 /**
1445  \brief Load-Acquire Exclusive (16 bit)
1446  \details Executes a LDAH exclusive instruction for 16 bit values.
1447  \param [in] ptr Pointer to data
1448  \return value of type uint16_t at (*ptr)
1449  */
1450 __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
1451 {
1452  uint32_t result;
1453 
1454  __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) );
1455  return ((uint16_t) result);
1456 }
1457 
1458 
1459 /**
1460  \brief Load-Acquire Exclusive (32 bit)
1461  \details Executes a LDA exclusive instruction for 32 bit values.
1462  \param [in] ptr Pointer to data
1463  \return value of type uint32_t at (*ptr)
1464  */
1465 __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
1466 {
1467  uint32_t result;
1468 
1469  __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) );
1470  return(result);
1471 }
1472 
1473 
1474 /**
1475  \brief Store-Release Exclusive (8 bit)
1476  \details Executes a STLB exclusive instruction for 8 bit values.
1477  \param [in] value Value to store
1478  \param [in] ptr Pointer to location
1479  \return 0 Function succeeded
1480  \return 1 Function failed
1481  */
1482 __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
1483 {
1484  uint32_t result;
1485 
1486  __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1487  return(result);
1488 }
1489 
1490 
1491 /**
1492  \brief Store-Release Exclusive (16 bit)
1493  \details Executes a STLH exclusive instruction for 16 bit values.
1494  \param [in] value Value to store
1495  \param [in] ptr Pointer to location
1496  \return 0 Function succeeded
1497  \return 1 Function failed
1498  */
1499 __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
1500 {
1501  uint32_t result;
1502 
1503  __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1504  return(result);
1505 }
1506 
1507 
1508 /**
1509  \brief Store-Release Exclusive (32 bit)
1510  \details Executes a STL exclusive instruction for 32 bit values.
1511  \param [in] value Value to store
1512  \param [in] ptr Pointer to location
1513  \return 0 Function succeeded
1514  \return 1 Function failed
1515  */
1516 __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
1517 {
1518  uint32_t result;
1519 
1520  __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
1521  return(result);
1522 }
1523 
1524 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1525  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
1526 
1527 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1528 
1529 
1530 /* ################### Compiler specific Intrinsics ########################### */
1531 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1532  Access to dedicated SIMD instructions
1533  @{
1534 */
1535 
1536 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1537 
1538 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1539 {
1540  uint32_t result;
1541 
1542  __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1543  return(result);
1544 }
1545 
1546 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1547 {
1548  uint32_t result;
1549 
1550  __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1551  return(result);
1552 }
1553 
1554 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1555 {
1556  uint32_t result;
1557 
1558  __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1559  return(result);
1560 }
1561 
1562 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1563 {
1564  uint32_t result;
1565 
1566  __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1567  return(result);
1568 }
1569 
1570 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1571 {
1572  uint32_t result;
1573 
1574  __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1575  return(result);
1576 }
1577 
1578 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1579 {
1580  uint32_t result;
1581 
1582  __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1583  return(result);
1584 }
1585 
1586 
1587 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1588 {
1589  uint32_t result;
1590 
1591  __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1592  return(result);
1593 }
1594 
1595 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1596 {
1597  uint32_t result;
1598 
1599  __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1600  return(result);
1601 }
1602 
1603 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1604 {
1605  uint32_t result;
1606 
1607  __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1608  return(result);
1609 }
1610 
1611 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1612 {
1613  uint32_t result;
1614 
1615  __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1616  return(result);
1617 }
1618 
1619 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1620 {
1621  uint32_t result;
1622 
1623  __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1624  return(result);
1625 }
1626 
1627 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1628 {
1629  uint32_t result;
1630 
1631  __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1632  return(result);
1633 }
1634 
1635 
1636 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1637 {
1638  uint32_t result;
1639 
1640  __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1641  return(result);
1642 }
1643 
1644 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1645 {
1646  uint32_t result;
1647 
1648  __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1649  return(result);
1650 }
1651 
1652 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1653 {
1654  uint32_t result;
1655 
1656  __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1657  return(result);
1658 }
1659 
1660 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1661 {
1662  uint32_t result;
1663 
1664  __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1665  return(result);
1666 }
1667 
1668 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1669 {
1670  uint32_t result;
1671 
1672  __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1673  return(result);
1674 }
1675 
1676 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1677 {
1678  uint32_t result;
1679 
1680  __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1681  return(result);
1682 }
1683 
1684 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1685 {
1686  uint32_t result;
1687 
1688  __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1689  return(result);
1690 }
1691 
1692 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1693 {
1694  uint32_t result;
1695 
1696  __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1697  return(result);
1698 }
1699 
1700 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1701 {
1702  uint32_t result;
1703 
1704  __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1705  return(result);
1706 }
1707 
1708 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1709 {
1710  uint32_t result;
1711 
1712  __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1713  return(result);
1714 }
1715 
1716 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1717 {
1718  uint32_t result;
1719 
1720  __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1721  return(result);
1722 }
1723 
1724 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1725 {
1726  uint32_t result;
1727 
1728  __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1729  return(result);
1730 }
1731 
1732 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1733 {
1734  uint32_t result;
1735 
1736  __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1737  return(result);
1738 }
1739 
1740 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1741 {
1742  uint32_t result;
1743 
1744  __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1745  return(result);
1746 }
1747 
1748 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1749 {
1750  uint32_t result;
1751 
1752  __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1753  return(result);
1754 }
1755 
1756 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1757 {
1758  uint32_t result;
1759 
1760  __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1761  return(result);
1762 }
1763 
1764 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1765 {
1766  uint32_t result;
1767 
1768  __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1769  return(result);
1770 }
1771 
1772 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1773 {
1774  uint32_t result;
1775 
1776  __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1777  return(result);
1778 }
1779 
1780 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1781 {
1782  uint32_t result;
1783 
1784  __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1785  return(result);
1786 }
1787 
1788 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1789 {
1790  uint32_t result;
1791 
1792  __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1793  return(result);
1794 }
1795 
1796 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1797 {
1798  uint32_t result;
1799 
1800  __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1801  return(result);
1802 }
1803 
1804 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1805 {
1806  uint32_t result;
1807 
1808  __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1809  return(result);
1810 }
1811 
1812 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1813 {
1814  uint32_t result;
1815 
1816  __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1817  return(result);
1818 }
1819 
1820 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1821 {
1822  uint32_t result;
1823 
1824  __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1825  return(result);
1826 }
1827 
1828 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1829 {
1830  uint32_t result;
1831 
1832  __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1833  return(result);
1834 }
1835 
1836 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1837 {
1838  uint32_t result;
1839 
1840  __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1841  return(result);
1842 }
1843 
1844 #define __SSAT16(ARG1,ARG2) \
1845 ({ \
1846  int32_t __RES, __ARG1 = (ARG1); \
1847  __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1848  __RES; \
1849  })
1850 
1851 #define __USAT16(ARG1,ARG2) \
1852 ({ \
1853  uint32_t __RES, __ARG1 = (ARG1); \
1854  __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1855  __RES; \
1856  })
1857 
1858 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1859 {
1860  uint32_t result;
1861 
1862  __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1863  return(result);
1864 }
1865 
1866 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1867 {
1868  uint32_t result;
1869 
1870  __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1871  return(result);
1872 }
1873 
1874 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1875 {
1876  uint32_t result;
1877 
1878  __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1879  return(result);
1880 }
1881 
1882 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1883 {
1884  uint32_t result;
1885 
1886  __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1887  return(result);
1888 }
1889 
1890 __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
1891 {
1892  uint32_t result;
1893 
1894  __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1895  return(result);
1896 }
1897 
1898 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1899 {
1900  uint32_t result;
1901 
1902  __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1903  return(result);
1904 }
1905 
1906 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1907 {
1908  uint32_t result;
1909 
1910  __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1911  return(result);
1912 }
1913 
1914 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1915 {
1916  uint32_t result;
1917 
1918  __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1919  return(result);
1920 }
1921 
1922 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1923 {
1924  union llreg_u{
1925  uint32_t w32[2];
1926  uint64_t w64;
1927  } llr;
1928  llr.w64 = acc;
1929 
1930 #ifndef __ARMEB__ /* Little endian */
1931  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1932 #else /* Big endian */
1933  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1934 #endif
1935 
1936  return(llr.w64);
1937 }
1938 
1939 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1940 {
1941  union llreg_u{
1942  uint32_t w32[2];
1943  uint64_t w64;
1944  } llr;
1945  llr.w64 = acc;
1946 
1947 #ifndef __ARMEB__ /* Little endian */
1948  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1949 #else /* Big endian */
1950  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1951 #endif
1952 
1953  return(llr.w64);
1954 }
1955 
1956 __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
1957 {
1958  uint32_t result;
1959 
1960  __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1961  return(result);
1962 }
1963 
1964 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1965 {
1966  uint32_t result;
1967 
1968  __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1969  return(result);
1970 }
1971 
1972 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1973 {
1974  uint32_t result;
1975 
1976  __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1977  return(result);
1978 }
1979 
1980 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1981 {
1982  uint32_t result;
1983 
1984  __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1985  return(result);
1986 }
1987 
1988 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1989 {
1990  union llreg_u{
1991  uint32_t w32[2];
1992  uint64_t w64;
1993  } llr;
1994  llr.w64 = acc;
1995 
1996 #ifndef __ARMEB__ /* Little endian */
1997  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1998 #else /* Big endian */
1999  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2000 #endif
2001 
2002  return(llr.w64);
2003 }
2004 
2005 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
2006 {
2007  union llreg_u{
2008  uint32_t w32[2];
2009  uint64_t w64;
2010  } llr;
2011  llr.w64 = acc;
2012 
2013 #ifndef __ARMEB__ /* Little endian */
2014  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
2015 #else /* Big endian */
2016  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
2017 #endif
2018 
2019  return(llr.w64);
2020 }
2021 
2022 __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
2023 {
2024  uint32_t result;
2025 
2026  __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2027  return(result);
2028 }
2029 
2030 __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
2031 {
2032  int32_t result;
2033 
2034  __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2035  return(result);
2036 }
2037 
2038 __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
2039 {
2040  int32_t result;
2041 
2042  __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
2043  return(result);
2044 }
2045 
2046 #if 0
2047 #define __PKHBT(ARG1,ARG2,ARG3) \
2048 ({ \
2049  uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2050  __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
2051  __RES; \
2052  })
2053 
2054 #define __PKHTB(ARG1,ARG2,ARG3) \
2055 ({ \
2056  uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
2057  if (ARG3 == 0) \
2058  __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
2059  else \
2060  __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
2061  __RES; \
2062  })
2063 #endif
2064 
2065 #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
2066  ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
2067 
2068 #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
2069  ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
2070 
2071 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
2072 {
2073  int32_t result;
2074 
2075  __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
2076  return(result);
2077 }
2078 
2079 #endif /* (__ARM_FEATURE_DSP == 1) */
2080 /*@} end of group CMSIS_SIMD_intrinsics */
2081 
2082 
2083 #pragma GCC diagnostic pop
2084 
2085 #endif /* __CMSIS_GCC_H */
ptr
uint32_t volatile * ptr
Definition: cmsis_iccarm.h:558
__disable_irq
#define __disable_irq
Definition: cmsis_iccarm.h:545
__get_CONTROL
static __inline uint32_t __get_CONTROL(void)
Enable IRQ Interrupts.
Definition: cmsis_armcc.h:130
sat
uint32_t sat
Definition: cmsis_gcc.h:1300
__set_MSP
static __inline void __set_MSP(uint32_t topOfMainStack)
Set Main Stack Pointer.
Definition: cmsis_armcc.h:226
__DMB
#define __DMB()
Data Memory Barrier.
Definition: cmsis_armcc.h:440
__get_FPSCR
#define __get_FPSCR()
Get FPSCR.
Definition: cmsis_armclang.h:754
__CMSIS_GCC_OUT_REG
#define __CMSIS_GCC_OUT_REG(r)
Definition: cmsis_gcc.h:827
__REVSH
#define __REVSH(value)
Reverse byte order (16 bit)
Definition: cmsis_armclang.h:866
op2
uint32_t op2
Definition: cmsis_gcc.h:955
__REV
#define __REV
Reverse byte order (32 bit)
Definition: cmsis_armcc.h:453
__attribute__
struct __attribute__((packed)) T_UINT32
Definition: cmsis_gcc.h:74
__RBIT
#define __RBIT
Reverse bit order of value.
Definition: cmsis_armclang.h:903
__set_FPSCR
#define __set_FPSCR(x)
Set FPSCR.
Definition: cmsis_armclang.h:766
__PACKED_STRUCT
#define __PACKED_STRUCT
Definition: cmsis_gcc.h:65
__ISB
#define __ISB()
Instruction Synchronization Barrier.
Definition: cmsis_armcc.h:418
__set_PRIMASK
static __inline void __set_PRIMASK(uint32_t priMask)
Set Priority Mask.
Definition: cmsis_armcc.h:250
__get_PRIMASK
static __inline uint32_t __get_PRIMASK(void)
Get Priority Mask.
Definition: cmsis_armcc.h:238
__get_APSR
static __inline uint32_t __get_APSR(void)
Get APSR Register.
Definition: cmsis_armcc.h:166
__REV16
#define __REV16(value)
Reverse byte order (16 bit)
Definition: cmsis_armclang.h:857
__enable_irq
#define __enable_irq
Definition: cmsis_iccarm.h:544
__set_PSP
static __inline void __set_PSP(uint32_t topOfProcStack)
Set Process Stack Pointer.
Definition: cmsis_armcc.h:202
__CMSIS_GCC_USE_REG
#define __CMSIS_GCC_USE_REG(r)
Definition: cmsis_gcc.h:829
__STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE
Definition: cmsis_gcc.h:50
__get_IPSR
static __inline uint32_t __get_IPSR(void)
Get IPSR Register.
Definition: cmsis_armcc.h:154
__get_MSP
static __inline uint32_t __get_MSP(void)
Get Main Stack Pointer.
Definition: cmsis_armcc.h:214
__get_PSP
static __inline uint32_t __get_PSP(void)
Get Process Stack Pointer.
Definition: cmsis_armcc.h:190
__ASM
#define __ASM
Definition: cmsis_gcc.h:41
__get_xPSR
#define __get_xPSR
Definition: cmsis_iccarm.h:548
__ROR
#define __ROR
Rotate Right in unsigned value (32 bit)
Definition: cmsis_armcc.h:493
__DSB
#define __DSB()
Data Synchronization Barrier.
Definition: cmsis_armcc.h:429
val
uint16_t val
Definition: cmsis_iccarm.h:184
__set_CONTROL
static __inline void __set_CONTROL(uint32_t control)
Set Control Register.
Definition: cmsis_armcc.h:142