DIY Logging Volt/Ampmeter
cmsis_armclang.h
Go to the documentation of this file.
1 /**************************************************************************//**
2  * @file cmsis_armclang.h
3  * @brief CMSIS compiler armclang (Arm Compiler 6) header file
4  * @version V5.0.4
5  * @date 10. January 2018
6  ******************************************************************************/
7 /*
8  * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
9  *
10  * SPDX-License-Identifier: Apache-2.0
11  *
12  * Licensed under the Apache License, Version 2.0 (the License); you may
13  * not use this file except in compliance with the License.
14  * You may obtain a copy of the License at
15  *
16  * www.apache.org/licenses/LICENSE-2.0
17  *
18  * Unless required by applicable law or agreed to in writing, software
19  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21  * See the License for the specific language governing permissions and
22  * limitations under the License.
23  */
24 
25 /*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */
26 
27 #ifndef __CMSIS_ARMCLANG_H
28 #define __CMSIS_ARMCLANG_H
29 
30 #pragma clang system_header /* treat file as system include file */
31 
32 #ifndef __ARM_COMPAT_H
33 #include <arm_compat.h> /* Compatibility header for Arm Compiler 5 intrinsics */
34 #endif
35 
36 /* CMSIS compiler specific defines */
37 #ifndef __ASM
38  #define __ASM __asm
39 #endif
40 #ifndef __INLINE
41  #define __INLINE __inline
42 #endif
43 #ifndef __STATIC_INLINE
44  #define __STATIC_INLINE static __inline
45 #endif
46 #ifndef __STATIC_FORCEINLINE
47  #define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline
48 #endif
49 #ifndef __NO_RETURN
50  #define __NO_RETURN __attribute__((__noreturn__))
51 #endif
52 #ifndef __USED
53  #define __USED __attribute__((used))
54 #endif
55 #ifndef __WEAK
56  #define __WEAK __attribute__((weak))
57 #endif
58 #ifndef __PACKED
59  #define __PACKED __attribute__((packed, aligned(1)))
60 #endif
61 #ifndef __PACKED_STRUCT
62  #define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
63 #endif
64 #ifndef __PACKED_UNION
65  #define __PACKED_UNION union __attribute__((packed, aligned(1)))
66 #endif
67 #ifndef __UNALIGNED_UINT32 /* deprecated */
68  #pragma clang diagnostic push
69  #pragma clang diagnostic ignored "-Wpacked"
70 /*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */
71  struct __attribute__((packed)) T_UINT32 { uint32_t v; };
72  #pragma clang diagnostic pop
73  #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
74 #endif
75 #ifndef __UNALIGNED_UINT16_WRITE
76  #pragma clang diagnostic push
77  #pragma clang diagnostic ignored "-Wpacked"
78 /*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */
79  __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
80  #pragma clang diagnostic pop
81  #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
82 #endif
83 #ifndef __UNALIGNED_UINT16_READ
84  #pragma clang diagnostic push
85  #pragma clang diagnostic ignored "-Wpacked"
86 /*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */
87  __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
88  #pragma clang diagnostic pop
89  #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
90 #endif
91 #ifndef __UNALIGNED_UINT32_WRITE
92  #pragma clang diagnostic push
93  #pragma clang diagnostic ignored "-Wpacked"
94 /*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */
95  __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
96  #pragma clang diagnostic pop
97  #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
98 #endif
99 #ifndef __UNALIGNED_UINT32_READ
100  #pragma clang diagnostic push
101  #pragma clang diagnostic ignored "-Wpacked"
102 /*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */
103  __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
104  #pragma clang diagnostic pop
105  #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
106 #endif
107 #ifndef __ALIGNED
108  #define __ALIGNED(x) __attribute__((aligned(x)))
109 #endif
110 #ifndef __RESTRICT
111  #define __RESTRICT __restrict
112 #endif
113 
114 
115 /* ########################### Core Function Access ########################### */
116 /** \ingroup CMSIS_Core_FunctionInterface
117  \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
118  @{
119  */
120 
121 /**
122  \brief Enable IRQ Interrupts
123  \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
124  Can only be executed in Privileged modes.
125  */
126 /* intrinsic void __enable_irq(); see arm_compat.h */
127 
128 
129 /**
130  \brief Disable IRQ Interrupts
131  \details Disables IRQ interrupts by setting the I-bit in the CPSR.
132  Can only be executed in Privileged modes.
133  */
134 /* intrinsic void __disable_irq(); see arm_compat.h */
135 
136 
137 /**
138  \brief Get Control Register
139  \details Returns the content of the Control Register.
140  \return Control Register value
141  */
143 {
144  uint32_t result;
145 
146  __ASM volatile ("MRS %0, control" : "=r" (result) );
147  return(result);
148 }
149 
150 
151 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
152 /**
153  \brief Get Control Register (non-secure)
154  \details Returns the content of the non-secure Control Register when in secure mode.
155  \return non-secure Control Register value
156  */
157 __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
158 {
159  uint32_t result;
160 
161  __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
162  return(result);
163 }
164 #endif
165 
166 
167 /**
168  \brief Set Control Register
169  \details Writes the given value to the Control Register.
170  \param [in] control Control Register value to set
171  */
172 __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
173 {
174  __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
175 }
176 
177 
178 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
179 /**
180  \brief Set Control Register (non-secure)
181  \details Writes the given value to the non-secure Control Register when in secure state.
182  \param [in] control Control Register value to set
183  */
184 __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
185 {
186  __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
187 }
188 #endif
189 
190 
191 /**
192  \brief Get IPSR Register
193  \details Returns the content of the IPSR Register.
194  \return IPSR Register value
195  */
196 __STATIC_FORCEINLINE uint32_t __get_IPSR(void)
197 {
198  uint32_t result;
199 
200  __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
201  return(result);
202 }
203 
204 
205 /**
206  \brief Get APSR Register
207  \details Returns the content of the APSR Register.
208  \return APSR Register value
209  */
210 __STATIC_FORCEINLINE uint32_t __get_APSR(void)
211 {
212  uint32_t result;
213 
214  __ASM volatile ("MRS %0, apsr" : "=r" (result) );
215  return(result);
216 }
217 
218 
219 /**
220  \brief Get xPSR Register
221  \details Returns the content of the xPSR Register.
222  \return xPSR Register value
223  */
224 __STATIC_FORCEINLINE uint32_t __get_xPSR(void)
225 {
226  uint32_t result;
227 
228  __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
229  return(result);
230 }
231 
232 
233 /**
234  \brief Get Process Stack Pointer
235  \details Returns the current value of the Process Stack Pointer (PSP).
236  \return PSP Register value
237  */
238 __STATIC_FORCEINLINE uint32_t __get_PSP(void)
239 {
240  uint32_t result;
241 
242  __ASM volatile ("MRS %0, psp" : "=r" (result) );
243  return(result);
244 }
245 
246 
247 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
248 /**
249  \brief Get Process Stack Pointer (non-secure)
250  \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
251  \return PSP Register value
252  */
253 __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
254 {
255  uint32_t result;
256 
257  __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
258  return(result);
259 }
260 #endif
261 
262 
263 /**
264  \brief Set Process Stack Pointer
265  \details Assigns the given value to the Process Stack Pointer (PSP).
266  \param [in] topOfProcStack Process Stack Pointer value to set
267  */
268 __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
269 {
270  __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
271 }
272 
273 
274 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
275 /**
276  \brief Set Process Stack Pointer (non-secure)
277  \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
278  \param [in] topOfProcStack Process Stack Pointer value to set
279  */
280 __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
281 {
282  __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
283 }
284 #endif
285 
286 
287 /**
288  \brief Get Main Stack Pointer
289  \details Returns the current value of the Main Stack Pointer (MSP).
290  \return MSP Register value
291  */
292 __STATIC_FORCEINLINE uint32_t __get_MSP(void)
293 {
294  uint32_t result;
295 
296  __ASM volatile ("MRS %0, msp" : "=r" (result) );
297  return(result);
298 }
299 
300 
301 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
302 /**
303  \brief Get Main Stack Pointer (non-secure)
304  \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
305  \return MSP Register value
306  */
307 __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
308 {
309  uint32_t result;
310 
311  __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
312  return(result);
313 }
314 #endif
315 
316 
317 /**
318  \brief Set Main Stack Pointer
319  \details Assigns the given value to the Main Stack Pointer (MSP).
320  \param [in] topOfMainStack Main Stack Pointer value to set
321  */
322 __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
323 {
324  __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
325 }
326 
327 
328 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
329 /**
330  \brief Set Main Stack Pointer (non-secure)
331  \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
332  \param [in] topOfMainStack Main Stack Pointer value to set
333  */
334 __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
335 {
336  __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
337 }
338 #endif
339 
340 
341 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
342 /**
343  \brief Get Stack Pointer (non-secure)
344  \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
345  \return SP Register value
346  */
347 __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
348 {
349  uint32_t result;
350 
351  __ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
352  return(result);
353 }
354 
355 
356 /**
357  \brief Set Stack Pointer (non-secure)
358  \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
359  \param [in] topOfStack Stack Pointer value to set
360  */
361 __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
362 {
363  __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
364 }
365 #endif
366 
367 
368 /**
369  \brief Get Priority Mask
370  \details Returns the current state of the priority mask bit from the Priority Mask Register.
371  \return Priority Mask value
372  */
373 __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
374 {
375  uint32_t result;
376 
377  __ASM volatile ("MRS %0, primask" : "=r" (result) );
378  return(result);
379 }
380 
381 
382 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
383 /**
384  \brief Get Priority Mask (non-secure)
385  \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
386  \return Priority Mask value
387  */
388 __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
389 {
390  uint32_t result;
391 
392  __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
393  return(result);
394 }
395 #endif
396 
397 
398 /**
399  \brief Set Priority Mask
400  \details Assigns the given value to the Priority Mask Register.
401  \param [in] priMask Priority Mask
402  */
403 __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
404 {
405  __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
406 }
407 
408 
409 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
410 /**
411  \brief Set Priority Mask (non-secure)
412  \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
413  \param [in] priMask Priority Mask
414  */
415 __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
416 {
417  __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
418 }
419 #endif
420 
421 
422 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
423  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
424  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
425 /**
426  \brief Enable FIQ
427  \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
428  Can only be executed in Privileged modes.
429  */
430 #define __enable_fault_irq __enable_fiq /* see arm_compat.h */
431 
432 
433 /**
434  \brief Disable FIQ
435  \details Disables FIQ interrupts by setting the F-bit in the CPSR.
436  Can only be executed in Privileged modes.
437  */
438 #define __disable_fault_irq __disable_fiq /* see arm_compat.h */
439 
440 
441 /**
442  \brief Get Base Priority
443  \details Returns the current value of the Base Priority register.
444  \return Base Priority register value
445  */
446 __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
447 {
448  uint32_t result;
449 
450  __ASM volatile ("MRS %0, basepri" : "=r" (result) );
451  return(result);
452 }
453 
454 
455 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
456 /**
457  \brief Get Base Priority (non-secure)
458  \details Returns the current value of the non-secure Base Priority register when in secure state.
459  \return Base Priority register value
460  */
461 __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
462 {
463  uint32_t result;
464 
465  __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
466  return(result);
467 }
468 #endif
469 
470 
471 /**
472  \brief Set Base Priority
473  \details Assigns the given value to the Base Priority register.
474  \param [in] basePri Base Priority value to set
475  */
476 __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
477 {
478  __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
479 }
480 
481 
482 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
483 /**
484  \brief Set Base Priority (non-secure)
485  \details Assigns the given value to the non-secure Base Priority register when in secure state.
486  \param [in] basePri Base Priority value to set
487  */
488 __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
489 {
490  __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
491 }
492 #endif
493 
494 
495 /**
496  \brief Set Base Priority with condition
497  \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
498  or the new value increases the BASEPRI priority level.
499  \param [in] basePri Base Priority value to set
500  */
501 __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
502 {
503  __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
504 }
505 
506 
507 /**
508  \brief Get Fault Mask
509  \details Returns the current value of the Fault Mask register.
510  \return Fault Mask register value
511  */
512 __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
513 {
514  uint32_t result;
515 
516  __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
517  return(result);
518 }
519 
520 
521 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
522 /**
523  \brief Get Fault Mask (non-secure)
524  \details Returns the current value of the non-secure Fault Mask register when in secure state.
525  \return Fault Mask register value
526  */
527 __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
528 {
529  uint32_t result;
530 
531  __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
532  return(result);
533 }
534 #endif
535 
536 
537 /**
538  \brief Set Fault Mask
539  \details Assigns the given value to the Fault Mask register.
540  \param [in] faultMask Fault Mask value to set
541  */
542 __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
543 {
544  __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
545 }
546 
547 
548 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
549 /**
550  \brief Set Fault Mask (non-secure)
551  \details Assigns the given value to the non-secure Fault Mask register when in secure state.
552  \param [in] faultMask Fault Mask value to set
553  */
554 __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
555 {
556  __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
557 }
558 #endif
559 
560 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
561  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
562  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
563 
564 
565 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
566  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
567 
568 /**
569  \brief Get Process Stack Pointer Limit
570  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
571  Stack Pointer Limit register hence zero is returned always in non-secure
572  mode.
573 
574  \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
575  \return PSPLIM Register value
576  */
577 __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
578 {
579 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
580  (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
581  // without main extensions, the non-secure PSPLIM is RAZ/WI
582  return 0U;
583 #else
584  uint32_t result;
585  __ASM volatile ("MRS %0, psplim" : "=r" (result) );
586  return result;
587 #endif
588 }
589 
590 #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
591 /**
592  \brief Get Process Stack Pointer Limit (non-secure)
593  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
594  Stack Pointer Limit register hence zero is returned always in non-secure
595  mode.
596 
597  \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
598  \return PSPLIM Register value
599  */
600 __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
601 {
602 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
603  // without main extensions, the non-secure PSPLIM is RAZ/WI
604  return 0U;
605 #else
606  uint32_t result;
607  __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
608  return result;
609 #endif
610 }
611 #endif
612 
613 
614 /**
615  \brief Set Process Stack Pointer Limit
616  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
617  Stack Pointer Limit register hence the write is silently ignored in non-secure
618  mode.
619 
620  \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
621  \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
622  */
623 __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
624 {
625 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
626  (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
627  // without main extensions, the non-secure PSPLIM is RAZ/WI
628  (void)ProcStackPtrLimit;
629 #else
630  __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
631 #endif
632 }
633 
634 
635 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
636 /**
637  \brief Set Process Stack Pointer (non-secure)
638  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
639  Stack Pointer Limit register hence the write is silently ignored in non-secure
640  mode.
641 
642  \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
643  \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
644  */
645 __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
646 {
647 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
648  // without main extensions, the non-secure PSPLIM is RAZ/WI
649  (void)ProcStackPtrLimit;
650 #else
651  __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
652 #endif
653 }
654 #endif
655 
656 
657 /**
658  \brief Get Main Stack Pointer Limit
659  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
660  Stack Pointer Limit register hence zero is returned always.
661 
662  \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
663  \return MSPLIM Register value
664  */
665 __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
666 {
667 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
668  (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
669  // without main extensions, the non-secure MSPLIM is RAZ/WI
670  return 0U;
671 #else
672  uint32_t result;
673  __ASM volatile ("MRS %0, msplim" : "=r" (result) );
674  return result;
675 #endif
676 }
677 
678 
679 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
680 /**
681  \brief Get Main Stack Pointer Limit (non-secure)
682  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
683  Stack Pointer Limit register hence zero is returned always.
684 
685  \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
686  \return MSPLIM Register value
687  */
688 __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
689 {
690 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
691  // without main extensions, the non-secure MSPLIM is RAZ/WI
692  return 0U;
693 #else
694  uint32_t result;
695  __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
696  return result;
697 #endif
698 }
699 #endif
700 
701 
702 /**
703  \brief Set Main Stack Pointer Limit
704  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
705  Stack Pointer Limit register hence the write is silently ignored.
706 
707  \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
708  \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
709  */
710 __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
711 {
712 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
713  (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
714  // without main extensions, the non-secure MSPLIM is RAZ/WI
715  (void)MainStackPtrLimit;
716 #else
717  __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
718 #endif
719 }
720 
721 
722 #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
723 /**
724  \brief Set Main Stack Pointer Limit (non-secure)
725  Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
726  Stack Pointer Limit register hence the write is silently ignored.
727 
728  \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
729  \param [in] MainStackPtrLimit Main Stack Pointer value to set
730  */
731 __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
732 {
733 #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
734  // without main extensions, the non-secure MSPLIM is RAZ/WI
735  (void)MainStackPtrLimit;
736 #else
737  __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
738 #endif
739 }
740 #endif
741 
742 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
743  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
744 
745 /**
746  \brief Get FPSCR
747  \details Returns the current value of the Floating Point Status/Control register.
748  \return Floating Point Status/Control register value
749  */
750 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
751  (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
752 #define __get_FPSCR (uint32_t)__builtin_arm_get_fpscr
753 #else
754 #define __get_FPSCR() ((uint32_t)0U)
755 #endif
756 
757 /**
758  \brief Set FPSCR
759  \details Assigns the given value to the Floating Point Status/Control register.
760  \param [in] fpscr Floating Point Status/Control value to set
761  */
762 #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
763  (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
764 #define __set_FPSCR __builtin_arm_set_fpscr
765 #else
766 #define __set_FPSCR(x) ((void)(x))
767 #endif
768 
769 
770 /*@} end of CMSIS_Core_RegAccFunctions */
771 
772 
773 /* ########################## Core Instruction Access ######################### */
774 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
775  Access to dedicated instructions
776  @{
777 */
778 
779 /* Define macros for porting to both thumb1 and thumb2.
780  * For thumb1, use low register (r0-r7), specified by constraint "l"
781  * Otherwise, use general registers, specified by constraint "r" */
782 #if defined (__thumb__) && !defined (__thumb2__)
783 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
784 #define __CMSIS_GCC_USE_REG(r) "l" (r)
785 #else
786 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
787 #define __CMSIS_GCC_USE_REG(r) "r" (r)
788 #endif
789 
790 /**
791  \brief No Operation
792  \details No Operation does nothing. This instruction can be used for code alignment purposes.
793  */
794 #define __NOP __builtin_arm_nop
795 
796 /**
797  \brief Wait For Interrupt
798  \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
799  */
800 #define __WFI __builtin_arm_wfi
801 
802 
803 /**
804  \brief Wait For Event
805  \details Wait For Event is a hint instruction that permits the processor to enter
806  a low-power state until one of a number of events occurs.
807  */
808 #define __WFE __builtin_arm_wfe
809 
810 
811 /**
812  \brief Send Event
813  \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
814  */
815 #define __SEV __builtin_arm_sev
816 
817 
818 /**
819  \brief Instruction Synchronization Barrier
820  \details Instruction Synchronization Barrier flushes the pipeline in the processor,
821  so that all instructions following the ISB are fetched from cache or memory,
822  after the instruction has been completed.
823  */
824 #define __ISB() __builtin_arm_isb(0xF);
825 
826 /**
827  \brief Data Synchronization Barrier
828  \details Acts as a special kind of Data Memory Barrier.
829  It completes when all explicit memory accesses before this instruction complete.
830  */
831 #define __DSB() __builtin_arm_dsb(0xF);
832 
833 
834 /**
835  \brief Data Memory Barrier
836  \details Ensures the apparent order of the explicit memory operations before
837  and after the instruction, without ensuring their completion.
838  */
839 #define __DMB() __builtin_arm_dmb(0xF);
840 
841 
842 /**
843  \brief Reverse byte order (32 bit)
844  \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
845  \param [in] value Value to reverse
846  \return Reversed value
847  */
848 #define __REV(value) __builtin_bswap32(value)
849 
850 
851 /**
852  \brief Reverse byte order (16 bit)
853  \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
854  \param [in] value Value to reverse
855  \return Reversed value
856  */
857 #define __REV16(value) __ROR(__REV(value), 16)
858 
859 
860 /**
861  \brief Reverse byte order (16 bit)
862  \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
863  \param [in] value Value to reverse
864  \return Reversed value
865  */
866 #define __REVSH(value) (int16_t)__builtin_bswap16(value)
867 
868 
869 /**
870  \brief Rotate Right in unsigned value (32 bit)
871  \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
872  \param [in] op1 Value to rotate
873  \param [in] op2 Number of Bits to rotate
874  \return Rotated value
875  */
876 __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
877 {
878  op2 %= 32U;
879  if (op2 == 0U)
880  {
881  return op1;
882  }
883  return (op1 >> op2) | (op1 << (32U - op2));
884 }
885 
886 
887 /**
888  \brief Breakpoint
889  \details Causes the processor to enter Debug state.
890  Debug tools can use this to investigate system state when the instruction at a particular address is reached.
891  \param [in] value is ignored by the processor.
892  If required, a debugger can use it to store additional information about the breakpoint.
893  */
894 #define __BKPT(value) __ASM volatile ("bkpt "#value)
895 
896 
897 /**
898  \brief Reverse bit order of value
899  \details Reverses the bit order of the given value.
900  \param [in] value Value to reverse
901  \return Reversed value
902  */
903 #define __RBIT __builtin_arm_rbit
904 
905 /**
906  \brief Count leading zeros
907  \details Counts the number of leading zeros of a data value.
908  \param [in] value Value to count the leading zeros
909  \return number of leading zeros in value
910  */
911 #define __CLZ (uint8_t)__builtin_clz
912 
913 
914 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
915  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
916  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
917  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
918 /**
919  \brief LDR Exclusive (8 bit)
920  \details Executes a exclusive LDR instruction for 8 bit value.
921  \param [in] ptr Pointer to data
922  \return value of type uint8_t at (*ptr)
923  */
924 #define __LDREXB (uint8_t)__builtin_arm_ldrex
925 
926 
927 /**
928  \brief LDR Exclusive (16 bit)
929  \details Executes a exclusive LDR instruction for 16 bit values.
930  \param [in] ptr Pointer to data
931  \return value of type uint16_t at (*ptr)
932  */
933 #define __LDREXH (uint16_t)__builtin_arm_ldrex
934 
935 
936 /**
937  \brief LDR Exclusive (32 bit)
938  \details Executes a exclusive LDR instruction for 32 bit values.
939  \param [in] ptr Pointer to data
940  \return value of type uint32_t at (*ptr)
941  */
942 #define __LDREXW (uint32_t)__builtin_arm_ldrex
943 
944 
945 /**
946  \brief STR Exclusive (8 bit)
947  \details Executes a exclusive STR instruction for 8 bit values.
948  \param [in] value Value to store
949  \param [in] ptr Pointer to location
950  \return 0 Function succeeded
951  \return 1 Function failed
952  */
953 #define __STREXB (uint32_t)__builtin_arm_strex
954 
955 
956 /**
957  \brief STR Exclusive (16 bit)
958  \details Executes a exclusive STR instruction for 16 bit values.
959  \param [in] value Value to store
960  \param [in] ptr Pointer to location
961  \return 0 Function succeeded
962  \return 1 Function failed
963  */
964 #define __STREXH (uint32_t)__builtin_arm_strex
965 
966 
967 /**
968  \brief STR Exclusive (32 bit)
969  \details Executes a exclusive STR instruction for 32 bit values.
970  \param [in] value Value to store
971  \param [in] ptr Pointer to location
972  \return 0 Function succeeded
973  \return 1 Function failed
974  */
975 #define __STREXW (uint32_t)__builtin_arm_strex
976 
977 
978 /**
979  \brief Remove the exclusive lock
980  \details Removes the exclusive lock which is created by LDREX.
981  */
982 #define __CLREX __builtin_arm_clrex
983 
984 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
985  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
986  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
987  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
988 
989 
990 #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
991  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
992  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
993 
994 /**
995  \brief Signed Saturate
996  \details Saturates a signed value.
997  \param [in] value Value to be saturated
998  \param [in] sat Bit position to saturate to (1..32)
999  \return Saturated value
1000  */
1001 #define __SSAT __builtin_arm_ssat
1002 
1003 
1004 /**
1005  \brief Unsigned Saturate
1006  \details Saturates an unsigned value.
1007  \param [in] value Value to be saturated
1008  \param [in] sat Bit position to saturate to (0..31)
1009  \return Saturated value
1010  */
1011 #define __USAT __builtin_arm_usat
1012 
1013 
1014 /**
1015  \brief Rotate Right with Extend (32 bit)
1016  \details Moves each bit of a bitstring right by one bit.
1017  The carry input is shifted in at the left end of the bitstring.
1018  \param [in] value Value to rotate
1019  \return Rotated value
1020  */
1021 __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
1022 {
1023  uint32_t result;
1024 
1025  __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1026  return(result);
1027 }
1028 
1029 
1030 /**
1031  \brief LDRT Unprivileged (8 bit)
1032  \details Executes a Unprivileged LDRT instruction for 8 bit value.
1033  \param [in] ptr Pointer to data
1034  \return value of type uint8_t at (*ptr)
1035  */
1036 __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1037 {
1038  uint32_t result;
1039 
1040  __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1041  return ((uint8_t) result); /* Add explicit type cast here */
1042 }
1043 
1044 
1045 /**
1046  \brief LDRT Unprivileged (16 bit)
1047  \details Executes a Unprivileged LDRT instruction for 16 bit values.
1048  \param [in] ptr Pointer to data
1049  \return value of type uint16_t at (*ptr)
1050  */
1051 __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1052 {
1053  uint32_t result;
1054 
1055  __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1056  return ((uint16_t) result); /* Add explicit type cast here */
1057 }
1058 
1059 
1060 /**
1061  \brief LDRT Unprivileged (32 bit)
1062  \details Executes a Unprivileged LDRT instruction for 32 bit values.
1063  \param [in] ptr Pointer to data
1064  \return value of type uint32_t at (*ptr)
1065  */
1066 __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
1067 {
1068  uint32_t result;
1069 
1070  __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1071  return(result);
1072 }
1073 
1074 
1075 /**
1076  \brief STRT Unprivileged (8 bit)
1077  \details Executes a Unprivileged STRT instruction for 8 bit values.
1078  \param [in] value Value to store
1079  \param [in] ptr Pointer to location
1080  */
1081 __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1082 {
1083  __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1084 }
1085 
1086 
1087 /**
1088  \brief STRT Unprivileged (16 bit)
1089  \details Executes a Unprivileged STRT instruction for 16 bit values.
1090  \param [in] value Value to store
1091  \param [in] ptr Pointer to location
1092  */
1093 __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1094 {
1095  __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1096 }
1097 
1098 
1099 /**
1100  \brief STRT Unprivileged (32 bit)
1101  \details Executes a Unprivileged STRT instruction for 32 bit values.
1102  \param [in] value Value to store
1103  \param [in] ptr Pointer to location
1104  */
1105 __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1106 {
1107  __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1108 }
1109 
1110 #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1111  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1112  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1113 
1114 /**
1115  \brief Signed Saturate
1116  \details Saturates a signed value.
1117  \param [in] value Value to be saturated
1118  \param [in] sat Bit position to saturate to (1..32)
1119  \return Saturated value
1120  */
1121 __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
1123  if ((sat >= 1U) && (sat <= 32U))
1124  {
1125  const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
1126  const int32_t min = -1 - max ;
1127  if (val > max)
1128  {
1129  return max;
1130  }
1131  else if (val < min)
1132  {
1133  return min;
1134  }
1135  }
1136  return val;
1137 }
1138 
1139 /**
1140  \brief Unsigned Saturate
1141  \details Saturates an unsigned value.
1142  \param [in] value Value to be saturated
1143  \param [in] sat Bit position to saturate to (0..31)
1144  \return Saturated value
1145  */
1146 __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
1147 {
1148  if (sat <= 31U)
1149  {
1150  const uint32_t max = ((1U << sat) - 1U);
1151  if (val > (int32_t)max)
1152  {
1153  return max;
1154  }
1155  else if (val < 0)
1156  {
1157  return 0U;
1158  }
1159  }
1160  return (uint32_t)val;
1161 }
1162 
1163 #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1164  (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1165  (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1166 
1167 
1168 #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1169  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
1170 /**
1171  \brief Load-Acquire (8 bit)
1172  \details Executes a LDAB instruction for 8 bit value.
1173  \param [in] ptr Pointer to data
1174  \return value of type uint8_t at (*ptr)
1175  */
1176 __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
1177 {
1178  uint32_t result;
1179 
1180  __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1181  return ((uint8_t) result);
1182 }
1183 
1184 
1185 /**
1186  \brief Load-Acquire (16 bit)
1187  \details Executes a LDAH instruction for 16 bit values.
1188  \param [in] ptr Pointer to data
1189  \return value of type uint16_t at (*ptr)
1190  */
1191 __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
1192 {
1193  uint32_t result;
1194 
1195  __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1196  return ((uint16_t) result);
1197 }
1198 
1199 
1200 /**
1201  \brief Load-Acquire (32 bit)
1202  \details Executes a LDA instruction for 32 bit values.
1203  \param [in] ptr Pointer to data
1204  \return value of type uint32_t at (*ptr)
1205  */
1206 __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
1207 {
1208  uint32_t result;
1209 
1210  __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1211  return(result);
1212 }
1213 
1214 
1215 /**
1216  \brief Store-Release (8 bit)
1217  \details Executes a STLB instruction for 8 bit values.
1218  \param [in] value Value to store
1219  \param [in] ptr Pointer to location
1220  */
1221 __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1222 {
1223  __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1224 }
1225 
1226 
1227 /**
1228  \brief Store-Release (16 bit)
1229  \details Executes a STLH instruction for 16 bit values.
1230  \param [in] value Value to store
1231  \param [in] ptr Pointer to location
1232  */
1233 __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1234 {
1235  __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1236 }
1237 
1238 
1239 /**
1240  \brief Store-Release (32 bit)
1241  \details Executes a STL instruction for 32 bit values.
1242  \param [in] value Value to store
1243  \param [in] ptr Pointer to location
1244  */
1245 __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1246 {
1247  __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1248 }
1249 
1250 
1251 /**
1252  \brief Load-Acquire Exclusive (8 bit)
1253  \details Executes a LDAB exclusive instruction for 8 bit value.
1254  \param [in] ptr Pointer to data
1255  \return value of type uint8_t at (*ptr)
1256  */
1257 #define __LDAEXB (uint8_t)__builtin_arm_ldaex
1258 
1259 
1260 /**
1261  \brief Load-Acquire Exclusive (16 bit)
1262  \details Executes a LDAH exclusive instruction for 16 bit values.
1263  \param [in] ptr Pointer to data
1264  \return value of type uint16_t at (*ptr)
1265  */
1266 #define __LDAEXH (uint16_t)__builtin_arm_ldaex
1267 
1268 
1269 /**
1270  \brief Load-Acquire Exclusive (32 bit)
1271  \details Executes a LDA exclusive instruction for 32 bit values.
1272  \param [in] ptr Pointer to data
1273  \return value of type uint32_t at (*ptr)
1274  */
1275 #define __LDAEX (uint32_t)__builtin_arm_ldaex
1276 
1277 
1278 /**
1279  \brief Store-Release Exclusive (8 bit)
1280  \details Executes a STLB exclusive instruction for 8 bit values.
1281  \param [in] value Value to store
1282  \param [in] ptr Pointer to location
1283  \return 0 Function succeeded
1284  \return 1 Function failed
1285  */
1286 #define __STLEXB (uint32_t)__builtin_arm_stlex
1287 
1288 
1289 /**
1290  \brief Store-Release Exclusive (16 bit)
1291  \details Executes a STLH exclusive instruction for 16 bit values.
1292  \param [in] value Value to store
1293  \param [in] ptr Pointer to location
1294  \return 0 Function succeeded
1295  \return 1 Function failed
1296  */
1297 #define __STLEXH (uint32_t)__builtin_arm_stlex
1298 
1299 
1300 /**
1301  \brief Store-Release Exclusive (32 bit)
1302  \details Executes a STL exclusive instruction for 32 bit values.
1303  \param [in] value Value to store
1304  \param [in] ptr Pointer to location
1305  \return 0 Function succeeded
1306  \return 1 Function failed
1307  */
1308 #define __STLEX (uint32_t)__builtin_arm_stlex
1309 
1310 #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1311  (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
1312 
1313 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1314 
1315 
1316 /* ################### Compiler specific Intrinsics ########################### */
1317 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1318  Access to dedicated SIMD instructions
1319  @{
1320 */
1321 
1322 #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1323 
1324 __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1325 {
1326  uint32_t result;
1327 
1328  __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1329  return(result);
1330 }
1331 
1332 __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1333 {
1334  uint32_t result;
1335 
1336  __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1337  return(result);
1338 }
1339 
1340 __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1341 {
1342  uint32_t result;
1343 
1344  __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1345  return(result);
1346 }
1347 
1348 __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1349 {
1350  uint32_t result;
1351 
1352  __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1353  return(result);
1354 }
1355 
1356 __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1357 {
1358  uint32_t result;
1359 
1360  __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1361  return(result);
1362 }
1363 
1364 __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1365 {
1366  uint32_t result;
1367 
1368  __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1369  return(result);
1370 }
1371 
1372 
1373 __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1374 {
1375  uint32_t result;
1376 
1377  __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1378  return(result);
1379 }
1380 
1381 __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1382 {
1383  uint32_t result;
1384 
1385  __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1386  return(result);
1387 }
1388 
1389 __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1390 {
1391  uint32_t result;
1392 
1393  __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1394  return(result);
1395 }
1396 
1397 __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1398 {
1399  uint32_t result;
1400 
1401  __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1402  return(result);
1403 }
1404 
1405 __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1406 {
1407  uint32_t result;
1408 
1409  __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1410  return(result);
1411 }
1412 
1413 __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1414 {
1415  uint32_t result;
1416 
1417  __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1418  return(result);
1419 }
1420 
1421 
1422 __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1423 {
1424  uint32_t result;
1425 
1426  __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1427  return(result);
1428 }
1429 
1430 __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1431 {
1432  uint32_t result;
1433 
1434  __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1435  return(result);
1436 }
1437 
1438 __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1439 {
1440  uint32_t result;
1441 
1442  __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1443  return(result);
1444 }
1445 
1446 __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1447 {
1448  uint32_t result;
1449 
1450  __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1451  return(result);
1452 }
1453 
1454 __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1455 {
1456  uint32_t result;
1457 
1458  __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1459  return(result);
1460 }
1461 
1462 __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1463 {
1464  uint32_t result;
1465 
1466  __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1467  return(result);
1468 }
1469 
1470 __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1471 {
1472  uint32_t result;
1473 
1474  __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1475  return(result);
1476 }
1477 
1478 __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1479 {
1480  uint32_t result;
1481 
1482  __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1483  return(result);
1484 }
1485 
1486 __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1487 {
1488  uint32_t result;
1489 
1490  __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1491  return(result);
1492 }
1493 
1494 __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1495 {
1496  uint32_t result;
1497 
1498  __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1499  return(result);
1500 }
1501 
1502 __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1503 {
1504  uint32_t result;
1505 
1506  __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1507  return(result);
1508 }
1509 
1510 __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1511 {
1512  uint32_t result;
1513 
1514  __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1515  return(result);
1516 }
1517 
1518 __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1519 {
1520  uint32_t result;
1521 
1522  __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1523  return(result);
1524 }
1525 
1526 __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1527 {
1528  uint32_t result;
1529 
1530  __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1531  return(result);
1532 }
1533 
1534 __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1535 {
1536  uint32_t result;
1537 
1538  __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1539  return(result);
1540 }
1541 
1542 __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1543 {
1544  uint32_t result;
1545 
1546  __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1547  return(result);
1548 }
1549 
1550 __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1551 {
1552  uint32_t result;
1553 
1554  __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1555  return(result);
1556 }
1557 
1558 __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1559 {
1560  uint32_t result;
1561 
1562  __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1563  return(result);
1564 }
1565 
1566 __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1567 {
1568  uint32_t result;
1569 
1570  __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1571  return(result);
1572 }
1573 
1574 __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1575 {
1576  uint32_t result;
1577 
1578  __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1579  return(result);
1580 }
1581 
1582 __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1583 {
1584  uint32_t result;
1585 
1586  __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1587  return(result);
1588 }
1589 
1590 __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1591 {
1592  uint32_t result;
1593 
1594  __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1595  return(result);
1596 }
1597 
1598 __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1599 {
1600  uint32_t result;
1601 
1602  __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1603  return(result);
1604 }
1605 
1606 __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1607 {
1608  uint32_t result;
1609 
1610  __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1611  return(result);
1612 }
1613 
1614 __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1615 {
1616  uint32_t result;
1617 
1618  __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1619  return(result);
1620 }
1621 
1622 __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1623 {
1624  uint32_t result;
1625 
1626  __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1627  return(result);
1628 }
1629 
1630 #define __SSAT16(ARG1,ARG2) \
1631 ({ \
1632  int32_t __RES, __ARG1 = (ARG1); \
1633  __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1634  __RES; \
1635  })
1636 
1637 #define __USAT16(ARG1,ARG2) \
1638 ({ \
1639  uint32_t __RES, __ARG1 = (ARG1); \
1640  __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1641  __RES; \
1642  })
1643 
1644 __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
1645 {
1646  uint32_t result;
1647 
1648  __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1649  return(result);
1650 }
1651 
1652 __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1653 {
1654  uint32_t result;
1655 
1656  __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1657  return(result);
1658 }
1659 
1660 __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
1661 {
1662  uint32_t result;
1663 
1664  __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1665  return(result);
1666 }
1667 
1668 __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1669 {
1670  uint32_t result;
1671 
1672  __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1673  return(result);
1674 }
1675 
1676 __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
1677 {
1678  uint32_t result;
1679 
1680  __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1681  return(result);
1682 }
1683 
1684 __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1685 {
1686  uint32_t result;
1687 
1688  __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1689  return(result);
1690 }
1691 
1692 __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1693 {
1694  uint32_t result;
1695 
1696  __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1697  return(result);
1698 }
1699 
1700 __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1701 {
1702  uint32_t result;
1703 
1704  __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1705  return(result);
1706 }
1707 
1708 __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1709 {
1710  union llreg_u{
1711  uint32_t w32[2];
1712  uint64_t w64;
1713  } llr;
1714  llr.w64 = acc;
1715 
1716 #ifndef __ARMEB__ /* Little endian */
1717  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1718 #else /* Big endian */
1719  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1720 #endif
1721 
1722  return(llr.w64);
1723 }
1724 
1725 __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1726 {
1727  union llreg_u{
1728  uint32_t w32[2];
1729  uint64_t w64;
1730  } llr;
1731  llr.w64 = acc;
1732 
1733 #ifndef __ARMEB__ /* Little endian */
1734  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1735 #else /* Big endian */
1736  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1737 #endif
1738 
1739  return(llr.w64);
1740 }
1741 
1742 __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
1743 {
1744  uint32_t result;
1745 
1746  __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1747  return(result);
1748 }
1749 
1750 __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1751 {
1752  uint32_t result;
1753 
1754  __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1755  return(result);
1756 }
1757 
1758 __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1759 {
1760  uint32_t result;
1761 
1762  __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1763  return(result);
1764 }
1765 
1766 __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1767 {
1768  uint32_t result;
1769 
1770  __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1771  return(result);
1772 }
1773 
1774 __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1775 {
1776  union llreg_u{
1777  uint32_t w32[2];
1778  uint64_t w64;
1779  } llr;
1780  llr.w64 = acc;
1781 
1782 #ifndef __ARMEB__ /* Little endian */
1783  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1784 #else /* Big endian */
1785  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1786 #endif
1787 
1788  return(llr.w64);
1789 }
1790 
1791 __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1792 {
1793  union llreg_u{
1794  uint32_t w32[2];
1795  uint64_t w64;
1796  } llr;
1797  llr.w64 = acc;
1798 
1799 #ifndef __ARMEB__ /* Little endian */
1800  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1801 #else /* Big endian */
1802  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1803 #endif
1804 
1805  return(llr.w64);
1806 }
1807 
1808 __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
1809 {
1810  uint32_t result;
1811 
1812  __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1813  return(result);
1814 }
1815 
1816 __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
1817 {
1818  int32_t result;
1819 
1820  __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1821  return(result);
1822 }
1823 
1824 __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
1825 {
1826  int32_t result;
1827 
1828  __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1829  return(result);
1830 }
1831 
1832 #if 0
1833 #define __PKHBT(ARG1,ARG2,ARG3) \
1834 ({ \
1835  uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1836  __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1837  __RES; \
1838  })
1839 
1840 #define __PKHTB(ARG1,ARG2,ARG3) \
1841 ({ \
1842  uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1843  if (ARG3 == 0) \
1844  __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
1845  else \
1846  __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1847  __RES; \
1848  })
1849 #endif
1850 
1851 #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
1852  ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
1853 
1854 #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
1855  ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
1856 
1857 __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1858 {
1859  int32_t result;
1860 
1861  __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
1862  return(result);
1863 }
1864 
1865 #endif /* (__ARM_FEATURE_DSP == 1) */
1866 /*@} end of group CMSIS_SIMD_intrinsics */
1867 
1868 
1869 #endif /* __CMSIS_ARMCLANG_H */
ptr
uint32_t volatile * ptr
Definition: cmsis_iccarm.h:558
__get_CONTROL
static __inline uint32_t __get_CONTROL(void)
Enable IRQ Interrupts.
Definition: cmsis_armcc.h:130
sat
uint32_t sat
Definition: cmsis_armclang.h:1122
__set_MSP
static __inline void __set_MSP(uint32_t topOfMainStack)
Set Main Stack Pointer.
Definition: cmsis_armcc.h:226
__CMSIS_GCC_OUT_REG
#define __CMSIS_GCC_OUT_REG(r)
Definition: cmsis_armclang.h:786
op2
uint32_t op2
Definition: cmsis_armclang.h:877
__PACKED_STRUCT
#define __PACKED_STRUCT
Definition: cmsis_armclang.h:62
__set_PRIMASK
static __inline void __set_PRIMASK(uint32_t priMask)
Set Priority Mask.
Definition: cmsis_armcc.h:250
__get_PRIMASK
static __inline uint32_t __get_PRIMASK(void)
Get Priority Mask.
Definition: cmsis_armcc.h:238
__get_APSR
static __inline uint32_t __get_APSR(void)
Get APSR Register.
Definition: cmsis_armcc.h:166
__attribute__
struct __attribute__((packed)) T_UINT32
Definition: cmsis_armclang.h:71
__set_PSP
static __inline void __set_PSP(uint32_t topOfProcStack)
Set Process Stack Pointer.
Definition: cmsis_armcc.h:202
__CMSIS_GCC_USE_REG
#define __CMSIS_GCC_USE_REG(r)
Definition: cmsis_armclang.h:787
__get_IPSR
static __inline uint32_t __get_IPSR(void)
Get IPSR Register.
Definition: cmsis_armcc.h:154
__get_MSP
static __inline uint32_t __get_MSP(void)
Get Main Stack Pointer.
Definition: cmsis_armcc.h:214
__get_PSP
static __inline uint32_t __get_PSP(void)
Get Process Stack Pointer.
Definition: cmsis_armcc.h:190
__ASM
#define __ASM
Definition: cmsis_armclang.h:38
__get_xPSR
#define __get_xPSR
Definition: cmsis_iccarm.h:548
__ROR
#define __ROR
Rotate Right in unsigned value (32 bit)
Definition: cmsis_armcc.h:493
val
uint16_t val
Definition: cmsis_iccarm.h:184
__set_CONTROL
static __inline void __set_CONTROL(uint32_t control)
Set Control Register.
Definition: cmsis_armcc.h:142
__STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE
Definition: cmsis_armclang.h:47